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Steady, three-dimensional convection in rectangular boxes of fluid-saturated porous 
material with square horizontal cross-section heated from below is found to be 
non-unique. The properties of a special class of solutions exhibiting a high degree of 
symmetry are determined as a function of box size and Rayleigh number. The stability 
of these solutions to general three-dimensional perturbations is also determined. In 
some cases, when these solutions are found to be unstable, the alternative forms of 
three-dimensional convection are presented. Multiple three-dimensional steady 
states are given for a few particular values of box size and Rayleigh number. 

1. Introduction 
This paper is part of a continuing effort (Straus & Schubert 1978,1979; Schubert & 

Straus 1979) to establish the fundamental properties of finite-amplitude three- 
dimensional thermal convection in fluid-saturated rectangular boxes of porous material 
heated from below. Our previous studies, as well as those of Holst & Aziz (1972) and 
Horne (1979), have concentrated on flows in cubes. According to linear theory, steady 
three-dimensional convection in a cube can occur if the Rayleigh number R exceeds 
47r2 (Beck 1972). For R in the range 47r2-4-5n2, the motion is a superposition of ortho- 
gonal two-dimensional rolls (Zebib & Kassoy 1978). When R exceeds 4.579 fully three- 
dimensional modes of convection can occur. The convective mode which becomes 
unstable at R = 4.57~~ according to linear theory, the so-called ( 1 , 1 , 1 )  mode, has 
ascending flow at diagonally opposite vertical edges of the cube and descending flow 
at the other diagonally opposed edges, as shown in figure 1. This three-dimensional 
convective mode is a member of a class of solutions possessing the following properties: 
invariance of the flow to an interchange of horizontal co-ordinates; symmetry of the 
temperature field about diagonals of horizontal planes; antisymmetry of the tempera- 
ture field with respect to reflexion about the horizontal midplane; and rotation of 90" 
about a vertical axis through the centre of the cube (Straus & Schubert 1979). All the 
stea.dy three-dimensional solutions that we reported in our earlier papers have 
possessed these characteristics; henceforth, we refer to such solutions as symmetric 
modes of convection. 

The symmetric solutions form a closed subset of all possible convective motions. 
The subset does not include the combination of orthogonal two-dimensional rolls which 
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FIUURE 1. Alternative forms of convection in a cube: (a) (1 ,  1, 1)  mode; ( b )  (1 ,  1, 2) mode; 
(c) ( i , 2 ,  2) mode. The length of an arrow is proportional to the velocity at the location of the 
base of the arrow. 

exists for R > 47r2, for example. Steady three-dimensional symmetric convective 
motions in a cube have been calculated for R in the range 4 . 5 7 ~ ~  to 150 by Straus & 
Schubert (1979). Schubert & Straus (1979) found that such solutions exist for R as large 
as 300, but that symmetric three-dimensional convection becomes oscillatory for R 
in excess of a value between 300 and 320 (see also Horne 1979). The steady symmetric 
three-dimensional convective motions in a cube are dominated by the (1,1,1) mode 
at all Rayleigh numbers between 4-5n2 and 300. 

Linear stability theory predicts that a number of nonsymmetric two-dimensional 
and fully three-dimensional modes of convection in the cube are possible a t  Rayleigh 
numbers less than 300. Thus one would expect that steady three-dimensional con- 
vection in a cube would be non-unique for R > 4 9 ;  non-symmetric forms of convection 
should exist a t  the same value of R for which we have obtained symmetric solutions. 
In fact, the question of the stability of the symmetric solutions to nonsymmetric 
perturbations immediately arises because the symmetric forms of convection con- 
stitute a subset of all possible convective modes. Accordingly, we have analysed the 
stability of the steady three-dimensional symmetric solutions in a cube to general 
(non-symmetric) perturbations. The results, discussed in detail later, show that sym- 
metric forms of convection in a cube are stable for R less than some value between 200 
and 220. For larger values of R, we have found that there are steady three-dimensional 
modes of convection in the cube which are dominated by the (1,1,1) mode and have 
Nusselt numbers Nu very close to those of the symmetric solutions; these solutions 
contain relatively insignificant contributions from nonsymmetric modes. These non- 
symmetric (1, 1 , 1)-dominated solutions in the cube become oscillatory for R in excess 
of some value between 300 and 350. Thus their properties are very similar to those of 
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the symmetric solutions. This is not to say that non-symmetric modes of convection, 
quite unlike the symmetric solutions, do not also exist. We will present, as an example 
of the non-uniqueness of the solutions, a solution in the cubic geometry dominated by 
orthogonal two-dimensional rolls at a value of R for which symmetric fully three- 
dimensional convection is stable. 

We have also extended our study of three-dimensional convection to non-cubic 
geometries. We consider rectangular boxes with square horizontal cross-section and 
varying height-to-width ratios. We have thus been able to delineate aregion of stability 
for symmetric steady solutions in a Rayleigh-number-box-size plane. For a few box 
sizes and values of R at which symmetric convection is unstable, we have calculated 
the forms of steady non-symmetric motion which exist instead. 

2. Linear stability theory 
The critical Rayleigh number R, for the onset of convection in a rectangular box of 

fluid-saturated porous material heated from below with height d and horizontal 
dimensions Z and b'is (Beck 1972) 

(1) 

where n, j, m = 0,1,2,  . . . are integers specifying the vertical (2 )  and horizontal (2, y) 
structures of the Fourier components of the temperature and motion fields. The 
disturbance temperature field, for example, is a superposition of modes of the form 

sin (nm/d) cos (jnx/Z) cos (mnylb). 

In  this paper we only consider boxes with square horizontal cross-section Z = b;  the 
critical Rayleigh numbers in this circumstance are given by 

n2{n2 +j2(d/Z)2 + m2(d/b)2}8 
j 2 ( d / Z ) 2  + m2(d/b)2 ' R, = 

Convection can occur if the Rayleigh number R exceeds the minimum value of Ri; 
all modes with R, < R are convectively unstable. The Rayleigh number is 

R = a.qp2Kcd A T / ~ K ,  (3) 

where a is the coefficient of thermal expansion of the fluid, g is the acceleration of 
gravity, p is the fluid density, K is the permeability of the porous medium, c is the fluid 
specific heat, A T  is thetemperature difference between the lower and upper isothermal 
surface of the box, p is the fluid viscosity and K is the average thermal conductivity of 
the fluid and solid matrix. 

Critical Rayleigh numbers for some of the simpler modes of convection are shown as 
functions of height-to-width ratio in figure 2. The figure includes two-dimensional modes 
(dotted curves), and fully three-dimensional symmetric (solid curves) and non- 
symmetric (dashed curves) modes. Throughout this paper we adopt the convention of 
labelling convective modes in the order (n , j ,  m). Clearly, for a given box size and values 
of R which are not too small, there are many two-dimensional and fully three-dimen- 
sional non-symmetric modes which can contribute to a general convective motion. 
The modes included in figure 2 are only a few of the very large number of modes which 
can exist at moderate supercritical Rayleigh numbers, especially in boxes shorter than 
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FIGURE 2. Critical Rayleigh numbers R, for the onset of convection as functions of box height- 
to-width ratio d l l  for a number of two- and three-dimensional modes of convection. Dotted 
curves are two-dimensional modes, dashed curves are non-symmetric three-dimensional modes. 
and solid curves are symmetric three-dimensional modes. (a) (1, 0, 1), (1, 1, 0); (a) (1, 0, 2), 
( 1 9  290); (4 (1, 0, 31, (1, 3,O); (4 (1, 3, 3); (4 (1, 1, 31, (11 3, 1); (f) (1, 1, 1); (8) (193, 21, 
( 1 , 2 , 3 ) ;  (h) (1, 2, 2); (i) (192, 1 ) s  (1, 1, 2). 

they are wide. We have specifically identified these particular modes here because 
they are the simplest of their respective types, and some of them dominate the finite- 
amplitude motions we discuss later. 

The modes labelled ( l , O ,  l), (1, l , O ) ,  ( l , O ,  2), (1,2,0),  (1,0,3),  (1,3,0) are two- 
dimensional rolls with horizontal axes parallel to the sides of the box. The modes 
(1, 0 , l )  and (1, 1,O) are single rolls, while (1 ,0 ,2) ,  (1 ,2 ,0)  and (1, 0,3),  (1,3,0) have two 
and three cells in the horizontal, respectively. The other modes in figure 2 are fully 
three-dimensional. Modes (1,1, l ) ,  (1,1,3),  (1,3, l),  (1,3,3) are symmetric, while 
(1,2,2), (1,1,2),  (1,2,1),  (1,2,3),  (1 ,3 ,2)  are non-symmetric. Figure 1 illustrates 
the flow patterns of the (1,1,  l),  (1 ,1 ,2)  and (1 ,2 ,2)  modes. All other modes can 
be easily visualized as extensions of the patterns in figure 1. 

Since there are, in general, many two-dimensional and non-symmetric three-dimen- 
sional modes that can occur in a rectangular box for a given R, one would expect that 
the symmetric steady states we have previously reported for 4-57r2 < R 6 300 are 
non-unique. Also, it is possible that under certain circumstances these symmetric 
solutions may be unstable to the growth of general perturbations and not be realizable 
in a fully three-dimensional situation. In  what follows, we first extend our previous 
calculations of symmetric convective states to the rectangular boxes with d l l  + 1. We 
then delineate the region of stability of symmetric three-dimensional steady states, 
in the R us. d l l  plane. We also determine the form of steady three-dimensional con- 
vection in a few cmes when the symmetric solutions are not stable. Finally, we 
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Solid curves refer to states dominated by the (1, 1, 1) mode. Dashed curves are for solutions 
dominated by the (1 ,3 ,3)  mode. 

illustrate the non-uniqueness of steady three-dimensional convection by obtaining a 
non-symmetric solution for the cube at a value of R for which a stable symmetric 
solution also exists. 

3. Symmetric steady states in non-cubic boxes 
The steady, finite-amplitude, symmetric, three-dimensional convective solutions 

in a cube for 4-57? < R 6 300 have already been described in our earlier papers. We 
used the Galerkin procedure dekcribed in those papers to produce symmetric steady 
states in non-cubic boxes. The solutions reported here were obtained with N = 10, 
where the parameter N is a measure of the number of Fourier coefficients used in a 
calculation. The truncation criterion is n + j + m  < N. We have not attempted to 
compute all possible symmetric solutions at each value of R and d / l .  

Figures 3 and 4 summarize the Nusselt numbers of these solutions. The Nusselt 
number Nu is the ratio of the average vertical heat flux to the heat flux in the basic 
conduction state. The solid curves in figure 3 refer to states dominated by the (1,1,1) 
mode; the dashed curves are for (1,3,3)-dominated convection. The Nusselt numbers 
in figure 4 are for symmetric forms of convection dominated by (1,3,1) and (1, 1,3) 
modes. For convection dominated by a particular mode, and for a given d / l ,  Nu 
increases aa R increases. As a function of d / l  for a given R, Nu exhibits a maximum in 
the range of d / l  for which solutions are possible. The maxima occur at values of d / l  
near those that minimize R, according to linear theory. At a given R, the type of sym- 
metric solution which transports the most heat depends on d/Z. As an example, at 
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FIGURE 4. Same aa figure 3 for (1, 3, 1)- and (1, 1, 3)-domintlted symmetric solutions. 

R = 150, symmetric convection dominated by the (1,1,1) mode transfers more heat 
than does (1,3,l)-dominated convection for d / l  2 0-57. For this same value of R, 
(1,3,1)-dominated convection transfers more heat than either (1,1,1)- or (1,3,3)- 
dominated convection when d / l  lies between about 0.38 and 0.57. For d / l s  0.38, the 
(1,3,3)-dominated state has a Nusselt number larger than the values of Nu for the 
other two types of convection. 

4. Stability of the symmetric solutions 
With the Galerkin technique, a solution to the equations of motion and temperature 

is obtained by solving a set of coupled, nonlinear, first-order, ordinary differential 
equations for the time behaviour of the Fourier expansion coefficients $njm (see, for 
example, Straus 6 Schubert 1979). The stability of a steady state specified by a set of 
values gnrm can be determined by perturbing the steady state with quantities $Ajn8 and 
determining whether the perturbations grow or decay with time. The linearized set of 
equations for the temporal evolution of $Ajrn is of the form 

dAjm = Mnjrnn.yrn~$A*j~rn., (4) 

where the dot indicates differentiation with respect to time. The elements of Mnjmn,3’m. 
depend on the steady-state coefficients gnjm. The eigenvalues of Mn,mx,yrnp determine 
whether the steady state is stable or not; if there are no eigenvalues with positive real 
part then the steady state is stable. When calculating these eigenvalues for the sym- 
metric steady states, we found that the eigenvalue with the largest real part was 
always real. 

The elements of Mnjm,,.yrnp were calculated numerically by initializing the $njm with 
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FIOURE 6. Region of stability of (1, 1, l)-domin8ted symmetric 
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the values &,,, for the symmetric steady state. Coefficients $nf,,, not allowed by the 
symmetry requirements of the steady state were initialized to zero. The system was 
then perturbed by adding a small non-zero quantity to a particular q$,,,. All quantities 
d,,,,,, were then calculated; the ratio of a particular dnjm to the perturbation amplitude 
of some other coefficient $n.r,,,. determines an element of Hnjmnnynl0. Perturbations of all 
coefficients satisfying the truncation criterion n + j + m < N were allowed. (Recall that 
all the symmetric steady states were calculated for N = 10.) The value N = 10 is 
sufficiently large to include the interactions between the symmetric modes ( 1 , 1 ,  l ) ,  
(1,3, l), (1,1,3), (1,3,3)’andthenon-symmetricones ( l , O ,  l) ,  (1, l , O ) ,  ( l , O ,  2), (1,2,0), 
(1,0,3), (1,3,0), ( l , l ,  2), (1,2, i), (1,2,2), (1,2,3), (1,3,2) in the stability analysis. 

The region of Rvs. d/Z parameter space in which (l,l,l)-dominated symmetric 
solutions are stable is shown in figure 5. The solid curve is the linear stability boundary 
for the onset of convection in the (1,1,1) mode. The dashed curve is the boundary, 
determined from the analysis described just above, separating symmetric ( 1 , 1 , 1 ) -  
dominated steady solutions which are stable to general three-dimensional perturba- 
tions from those that are not. Symmetric (1, 1, 1)-dominated steady solutions in a cube, 
for example, are stable for 4 . 5 ~ ~  6 R < 180. Actually, these solutions are stable for 
even larger R because the location of the dashed stability boundary depends somewhat 
on N. To test the sensitivity of the stability boundary to the value of N used in its 
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R Symmetric Non-symmetric 

200 
250 
300 

4.41 
5.00 
5.43 

4.42 
4.95 
5.30 

TABLE 1. A comparison of Nusselt numbers for symmetric and non-symmetric steady 
convection in a cube ( N  = 10). 

computation, we carried out stability calculations for symmetric (1 ,1 ,1)  steady states 
in a cube with N = 12 and found that these solutions are stable for R less than some 
value between 200 and 220. Thus, the stability boundary of figure 5 is aucurate to about 
10 yo at the larger values of R treated, but the accuracy improves with decreasing R. 
Figure 5 shows that, in a fully three-dimensional situation, symmetric (1 ,1 ,1) -  
dominated steady solutions are not realizable in boxes with d / l  s 0.6. 

We also tested the stability of symmetric (1 ,3 ,3)-  or (1,3,1)-,  (1,1,3)-dominated 
steady solutions and found them all to be unstable to general three-dimensional 
perturbations. Thus none of these solutions is realizable in a fully three-dimensional 
situation. 

5. Non-symmetric steady states 
What is the nature of the non-symmetric forms of convection when &/1 and R are 

such that symmetric solutions are unstable? Although we have not attempted to 
answer this question in a systematic and detailed manner, we have calculated a number 
of non-symmetric steady states for several values of R and d l l .  We first consider the 
cubic geometry. According to figure 5, symmetric solutions are unstable for R > 180 
when & / I  = 1 and N = 10. We have computed non-symmetric steady states with 
R = 200, 250 and 300 when d / l  = 1 and N = 10. These solutions are all essentially 
similar to the symmetric steady states we reported previously, in the sense that they 
are dominated by the symmetric ( 1 , 1 , 1 )  mode with only small contributions from 
non-symmetric modes. Table 1 shows how close the Nusselt numbers are for the 
symmetric and nonsymmetric solutions. While these particular non-symmetric solu- 
tions are very much like the symmetric ones, there are likely to be other non-symmetric 
solutions which are quite distinct. 

Non-symmetric convection in a cube at  R = 350 was found to be oscillatory with 
N = 10. Thus our earlier conclusion (Schubert & Straus 1979) that three-dimensional 
convection in a cube becomes oscillatory when R lies somewhere between 300 and 320 
is essentially unaltered by the inclusion of the non-symmetric modes (as least for those 
non-symmetric solutions dominated by the (1,1,1) symmetric mode). 

As one example of the fundamental non-uniqueness of three-dimensional convection, 
we have obtained a Don-symmetric steady solution in a cube dominated by the 
orthogonal rolls (1,1,0),  (1, 0 , l )  at a Rayleigh number of 80 (the solution was calcu- 
lated with N = 8). The Nusselt number for this solution is 2.24. The symmetric 
(l,l,l)-dominated solution is stable at this value of R and has a Nusselt number of 
2.16 ( N  = 8). Thus, initial conditions determine which of these stable steady forms of 
three-dimensional convection in a cube would be realized at R = 80. 

We have also obtained some non-symmetric steady solutions for the case d / l  = 0.5 
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at R = 80 and 100. For these values of R and d l l  there are no stable symmetric steady 
states. At R = 80, the non-symmetric solution is mainly (1,2,1) and (1, 1,2), and 
N u  = 2.23 (N  = 8). At R = 100 we calculated two solutions, one dominated by (1,2,1) 
and (1, 1,2), and the other a mixture of many modes including (1, 0, l) ,  (1,1,0), (l,O, 2), 
(1,2,0), (1,1,2) and (1,2,1). Nu for these solutions are 2-61 and 2.67 ( N  = 8), 
respectively. Again, initial conditions must determine which of these solutions is 
realized. 

6. Summary and discussion 
We have extended our studies of three-dimensional convection in rectangular boxes 

of fluid-saturated porous material by computing the properties of steady symmetric 
solutions in boxes with square horizontal cross-section. This subset of all possible 
solutions possesses special symmetry properties making its computation much easier 
(in terms of computer time and storage requirements) than that of a general solution. 
However, symmetric solutions are not always stable to general three-dimensional 
perturbations. Accordingly, we have delineated the stability boundary of the sym- 
metric solutions in a Rayleigh-number-box-size plane. 

In  a number of cases when symmetric solutions are unstable, we have calculated 
the alternative forms of steady three-dimensional convection. In cubes, symmetric 
convection is unstable for sufficiently high Rayleigh number; in this circumstance, 
we have found non-symmetric steady states whose characteristics are quite similar to 
those of the unstable symmetric solutions. In rectangular boxes which are much wider 
than they are tall, symmetric solutions are generally found to be unstable. In these 
cases we have found non-symmetric steady states which are quite distinct from their 
unstable symmetric counterparts. 

Steady three-dimensional convection in rectangular boxes is highly non-unique. As 
examples of this we have presented a non-symmetric solution and a stable symmetric 
one at the same value of R in a cube, and two non-symmetric states in a short rec- 
tangular box at the same value of R. These multiple solutions at  identical values of 
d l l  and R have quite distinct characteristics. 

More work is clearly needed to describe the features of steady non-symmetric con- 
vection, including their forms and heat transfer capabilities. If this could be done in 
some systematic way then we would at least have a qualitative understanding of the 
extent of the non-uniqueness in solutions. 

This work was supported by the National Science Foundation under grant number 
ENG 76-82119. 
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